Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.

Identifieur interne : 001D92 ( Main/Exploration ); précédent : 001D91; suivant : 001D93

Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.

Auteurs : Yuanheng Cai [États-Unis] ; Mohammad-Wadud Bhuiya [États-Unis] ; John Shanklin [États-Unis] ; Chang-Jun Liu [États-Unis]

Source :

RBID : pubmed:26378240

Descripteurs français

English descriptors

Abstract

Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta.

DOI: 10.1074/jbc.M115.684217
PubMed: 26378240
PubMed Central: PMC4646325


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.</title>
<author>
<name sortKey="Cai, Yuanheng" sort="Cai, Yuanheng" uniqKey="Cai Y" first="Yuanheng" last="Cai">Yuanheng Cai</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bhuiya, Mohammad Wadud" sort="Bhuiya, Mohammad Wadud" uniqKey="Bhuiya M" first="Mohammad-Wadud" last="Bhuiya">Mohammad-Wadud Bhuiya</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shanklin, John" sort="Shanklin, John" uniqKey="Shanklin J" first="John" last="Shanklin">John Shanklin</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chang Jun" sort="Liu, Chang Jun" uniqKey="Liu C" first="Chang-Jun" last="Liu">Chang-Jun Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 cliu@bnl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26378240</idno>
<idno type="pmid">26378240</idno>
<idno type="doi">10.1074/jbc.M115.684217</idno>
<idno type="pmc">PMC4646325</idno>
<idno type="wicri:Area/Main/Corpus">001B10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B10</idno>
<idno type="wicri:Area/Main/Curation">001B10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B10</idno>
<idno type="wicri:Area/Main/Exploration">001B10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.</title>
<author>
<name sortKey="Cai, Yuanheng" sort="Cai, Yuanheng" uniqKey="Cai Y" first="Yuanheng" last="Cai">Yuanheng Cai</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bhuiya, Mohammad Wadud" sort="Bhuiya, Mohammad Wadud" uniqKey="Bhuiya M" first="Mohammad-Wadud" last="Bhuiya">Mohammad-Wadud Bhuiya</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shanklin, John" sort="Shanklin, John" uniqKey="Shanklin J" first="John" last="Shanklin">John Shanklin</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chang Jun" sort="Liu, Chang Jun" uniqKey="Liu C" first="Chang-Jun" last="Liu">Chang-Jun Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 cliu@bnl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (MeSH)</term>
<term>Cell Wall (chemistry)</term>
<term>Cell Wall (enzymology)</term>
<term>Cell Wall (genetics)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Lignin (chemistry)</term>
<term>Lignin (metabolism)</term>
<term>Methyltransferases (chemistry)</term>
<term>Methyltransferases (genetics)</term>
<term>Methyltransferases (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Phenols (chemistry)</term>
<term>Phenols (metabolism)</term>
<term>Phenylpropionates (chemistry)</term>
<term>Phenylpropionates (metabolism)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plasmids (chemistry)</term>
<term>Plasmids (metabolism)</term>
<term>Populus (chemistry)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Propionates (chemistry)</term>
<term>Propionates (metabolism)</term>
<term>Protein Engineering (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Structural Homology, Protein (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Banque de gènes (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Ingénierie des protéines (MeSH)</term>
<term>Lignine (composition chimique)</term>
<term>Lignine (métabolisme)</term>
<term>Methyltransferases (composition chimique)</term>
<term>Methyltransferases (génétique)</term>
<term>Methyltransferases (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Paroi cellulaire (composition chimique)</term>
<term>Paroi cellulaire (enzymologie)</term>
<term>Paroi cellulaire (génétique)</term>
<term>Phénols (composition chimique)</term>
<term>Phénols (métabolisme)</term>
<term>Phénylpropionates (composition chimique)</term>
<term>Phénylpropionates (métabolisme)</term>
<term>Plasmides (composition chimique)</term>
<term>Plasmides (métabolisme)</term>
<term>Populus (composition chimique)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Propionates (composition chimique)</term>
<term>Propionates (métabolisme)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Similitude structurale de protéines (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lignin</term>
<term>Methyltransferases</term>
<term>Phenols</term>
<term>Phenylpropionates</term>
<term>Plant Proteins</term>
<term>Propionates</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Wall</term>
<term>Plasmids</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lignine</term>
<term>Methyltransferases</term>
<term>Paroi cellulaire</term>
<term>Phénols</term>
<term>Phénylpropionates</term>
<term>Plasmides</term>
<term>Populus</term>
<term>Propionates</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Paroi cellulaire</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cell Wall</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Wall</term>
<term>Escherichia coli</term>
<term>Methyltransferases</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Methyltransferases</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Lignin</term>
<term>Methyltransferases</term>
<term>Phenols</term>
<term>Phenylpropionates</term>
<term>Plant Proteins</term>
<term>Plasmids</term>
<term>Propionates</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
<term>Lignine</term>
<term>Methyltransferases</term>
<term>Phénols</term>
<term>Phénylpropionates</term>
<term>Plasmides</term>
<term>Propionates</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Cloning, Molecular</term>
<term>Crystallography, X-Ray</term>
<term>Gene Expression</term>
<term>Gene Library</term>
<term>Mutation</term>
<term>Protein Engineering</term>
<term>Structural Homology, Protein</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque de gènes</term>
<term>Clonage moléculaire</term>
<term>Cristallographie aux rayons X</term>
<term>Expression des gènes</term>
<term>Ingénierie des protéines</term>
<term>Mutation</term>
<term>Similitude structurale de protéines</term>
<term>Spécificité du substrat</term>
<term>Substitution d'acide aminé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26378240</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>290</Volume>
<Issue>44</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.</ArticleTitle>
<Pagination>
<MedlinePgn>26715-24</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M115.684217</ELocationID>
<Abstract>
<AbstractText>Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta. </AbstractText>
<CopyrightInformation>© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cai</LastName>
<ForeName>Yuanheng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhuiya</LastName>
<ForeName>Mohammad-Wadud</ForeName>
<Initials>MW</Initials>
<AffiliationInfo>
<Affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shanklin</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chang-Jun</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>From the Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 cliu@bnl.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>3P9I</AccessionNumber>
<AccessionNumber>3TKY</AccessionNumber>
<AccessionNumber>5CVJ</AccessionNumber>
<AccessionNumber>5CVU</AccessionNumber>
<AccessionNumber>5CVV</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010666">Phenylpropionates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011422">Propionates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8O6NO04SMV</RegistryNumber>
<NameOfSubstance UI="C496130">sinapyl alcohol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E7SM92591P</RegistryNumber>
<NameOfSubstance UI="C010559">coniferyl alcohol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D008780">Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IBS9D1EU3J</RegistryNumber>
<NameOfSubstance UI="C495469">trans-3-(4'-hydroxyphenyl)-2-propenoic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008780" MajorTopicYN="N">Methyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010666" MajorTopicYN="N">Phenylpropionates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011422" MajorTopicYN="N">Propionates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015202" MajorTopicYN="N">Protein Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040681" MajorTopicYN="N">Structural Homology, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">4-O-methyltransferase</Keyword>
<Keyword MajorTopicYN="N">crystal structure</Keyword>
<Keyword MajorTopicYN="N">directed evolution</Keyword>
<Keyword MajorTopicYN="N">lignin</Keyword>
<Keyword MajorTopicYN="N">monolignol</Keyword>
<Keyword MajorTopicYN="N">mutagenesis</Keyword>
<Keyword MajorTopicYN="N">plant cell wall</Keyword>
<Keyword MajorTopicYN="N">protein engineering</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26378240</ArticleId>
<ArticleId IdType="pii">M115.684217</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M115.684217</ArticleId>
<ArticleId IdType="pmc">PMC4646325</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W555-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20478824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2011 Apr;15(2):194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D387-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2011 Sep;3(9):738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21860465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2003 Oct 8;51(21):6178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14518941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1179:103-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25055773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 15;22(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):278-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Feb 20;17(4):R115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2013 Apr;24(2):336-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23228388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Dec;22(12):4114-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 1;285(1):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6300-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Feb;134(2):586-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Aug 1;368(1):172-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10415125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Dec;18(12):3656-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jul;24(7):3135-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22851762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Jul;59(Pt 7):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12832755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2009 Feb;13(1):3-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19249235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2005 Jul 4;44(27):4192-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15929154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 May;58(4):706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19175772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2013 Mar 15;60(1):81-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22465795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Oct;181(4):379-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21889043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2006 Oct;10(5):498-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16939713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2013 Apr;29(4):667-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23225176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1620-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20511296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):891-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2006 Aug 7;12(23):6031-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16789057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Dec;12(9):1154-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25209835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2008 Jul 21;9(11):1797-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18567049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2009 Jun;30 Suppl 1:S162-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19517507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1998 Jan 1;349(1):153-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9439593</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Cai, Yuanheng" sort="Cai, Yuanheng" uniqKey="Cai Y" first="Yuanheng" last="Cai">Yuanheng Cai</name>
</region>
<name sortKey="Bhuiya, Mohammad Wadud" sort="Bhuiya, Mohammad Wadud" uniqKey="Bhuiya M" first="Mohammad-Wadud" last="Bhuiya">Mohammad-Wadud Bhuiya</name>
<name sortKey="Liu, Chang Jun" sort="Liu, Chang Jun" uniqKey="Liu C" first="Chang-Jun" last="Liu">Chang-Jun Liu</name>
<name sortKey="Shanklin, John" sort="Shanklin, John" uniqKey="Shanklin J" first="John" last="Shanklin">John Shanklin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26378240
   |texte=   Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26378240" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020